arrow-left

All pages
gitbookPowered by GitBook
1 of 1

Loading...

4.1. Binary Search Trees

This section discusses abstraction of binary search trees.

circle-info

This section assumes that you have already learned core concepts about binary search tress from the prerequisite. Thus, it focuses on the abstraction that can be applied to other types of binary search trees introduced in the following sections.

hashtag
Abstract Binary Node

Let us create an abstract class, :

  • L1: defines two generic types, T for the type of the key and N is for the type of the binary node.

  • L8: calls the setKey() method to assign the value of key in L2

Let us define boolean methods for the member fields:

What is the input parameter node is null for the isLeftChild() and isRightChild() methods?

Let us then define getters to access the member fields:

We can also define helper methods inferred by the getters:

  • L9: this needs to be casted to N since the input parameter of isLeftChild() is N.

Is it safe to downcast this to N?

Finally, let us define setters and their helper methods:

  • L5,10: sets node to be a child of this in two steps:

    • L6,11: replaces the parent of node with this

hashtag
Binary Node

Let us define the class inheriting AbstractBinaryNode:

  • L1: defines only 1 generic type T for the comparable key and passes itself for the generic type N to theAbstractBinaryNode class.

Is there any abstract method from AbstractBinaryNode to be defined in BinaryNode?

hashtag
Abstract Binary Search Tree

Let us define an abstract class, :

  • L1: defines two generic types, T for the type of the key and N is for the type of the binary node.

  • L4: initializes the member field root to null.

Why does Java not allow a generic type to be instantiated (e.g., node = new N())?

Let us define searching methods:

What are the worst-case complexities of findNode(), findMinNode(), and findMaxNode()?

Let us define the add() method:

  • L5: creates a node with the key to be the root if this tree does not include any node.

  • L7: finds the appropriate location for the key and creates the node.

What does the add() method above do when the input key already exists in the tree?

Let us define the remove() method:

  • L6: removes a node with two children using the Hibbard algorithm.

  • L7: removes a node with no or one child

The removeSelf() method makes the node's only child as the child of its parent and removes it:

  • L6: finds the child of node.

  • L7: replaces node with its child.

The removeHibbard() method finds a node that can be the parent of the left- and the right-children of node and makes it a child of its parent:

Which nodes are guaranteed to be the parent of those left- and right- children?

The following demonstrates how the above removeHibbard() method works:

What is the worst-case complexity of the removeHibbard() method?

hashtag
Binary Search Tree

Let us define the BinarySearchTree inheriting AbstractBinarySearchTree:

.
.
  • L7,12: sets node to be the child.

  • L20: replaces the parent of node with this in two steps:

    • L22: node gets abandoned by its current parent.

    • L23: this becomes the new parent of node.

  • L32: replaces oldChild of this node with newChild.

  • L9: creates a binary node typed N, required for the add() method.

    AbstractBinaryNodearrow-up-right
    BinaryNodearrow-up-right
    AbstractBinarySearchTreearrow-up-right
    public abstract class AbstractBinaryNode<T extends Comparable<T>, N extends AbstractBinaryNode<T, N>> {
        protected T key;
        protected N parent;
        protected N left_child;
        protected N right_child;
    
        public AbstractBinaryNode(T key) {
            setKey(key);
        }
    }
    public boolean hasParent() { return parent != null; }
    
    public boolean hasLeftChild() { return left_child != null; }
    
    public boolean hasRightChild() { return right_child != null; }
    
    public boolean hasBothChildren() {
        return hasLeftChild() && hasRightChild();
    }
    
    /** @return true if the specific node is the left child of this node. */
    public boolean isLeftChild(N node) {
        return left_child == node;
    }
    
    /** @return true if the specific node is the right child of this node. */
    public boolean isRightChild(N node) {
        return right_child == node;
    }
    public T getKey() { return key; }
    
    public N getParent() { return parent; }
    
    public N getLeftChild() { return left_child; }
    
    public N getRightChild() { return right_child; }
    public N getGrandParent() {
        return hasParent() ? parent.getParent() : null;
    }
    
    @SuppressWarnings("unchecked")
    public N getSibling() {
        if (hasParent()) {
            N parent = getParent();
            return parent.isLeftChild((N)this) ? parent.getRightChild() : parent.getLeftChild();
        }
    
        return null;
    }
    
    public N getUncle() {
        return hasParent() ? parent.getSibling() : null;
    }
    public void setKey(T key) { this.key = key; }
    
    public void setParent(N node) { parent = node; }
    
    public void setLeftChild(N node) {
        replaceParent(node);
        left_child = node;
    }
    
    public void setRightChild(N node) {
        replaceParent(node);
        right_child = node;
    }
    
    /**
     * Replaces the parent of the specific node to be this node. 
     * @param node the node whose parent to be replaced.
     */
    @SuppressWarnings("unchecked")
    protected void replaceParent(N node) {
        if (node != null) {
            if (node.hasParent()) node.getParent().replaceChild(node, null);
            node.setParent((N)this);
        }
    }
    
    /**
     * Replaces the old child with the new child if exists.
     * @param oldChild the old child of this node to be replaced.
     * @param newChild the new child to be added to this node.
     */
    public void replaceChild(N oldChild, N newChild) {
        if (isLeftChild(oldChild)) setLeftChild(newChild);
        else if (isRightChild(oldChild)) setRightChild(newChild);
    }
    public class BinaryNode<T extends Comparable<T>> extends AbstractBinaryNode<T, BinaryNode<T>> {
        public BinaryNode(T key) {
            super(key);
        }
    }
    public abstract class AbstractBinarySearchTree<T extends Comparable<T>, N extends AbstractBinaryNode<T, N>> {
        protected N root;
    
        public AbstractBinarySearchTree() {
            setRoot(null);
        }
    
        /** @return a new node with the specific key. */
        abstract public N createNode(T key);
        
        public boolean isRoot(N node) { return root == node; }
    
        public N getRoot() { return root; }
    
        public void setRoot(N node) {
            if (node != null) node.setParent(null);
            root = node;
        }
    }
    /** @return the node with the specific key if exists; otherwise, {@code null}. */
    public N get(T key) {
        return findNode(root, key);
    }
    
    /** @return the node with the specific key if exists; otherwise, {@code null}. */
    protected N findNode(N node, T key) {
        if (node == null) return null;
        int diff = key.compareTo(node.getKey());
    
        if (diff < 0)
            return findNode(node.getLeftChild(), key);
        else if (diff > 0)
            return findNode(node.getRightChild(), key);
        else
            return node;
    }
    
    /** @return the node with the minimum key under the subtree of {@code node}. */
    protected N findMinNode(N node) {
        return node.hasLeftChild() ? findMinNode(node.getLeftChild()) : node;
    }
    
    /** @return the node with the maximum key under the subtree of {@code node}. */
    protected N findMaxNode(N node) {
        return node.hasRightChild() ? findMaxNode(node.getRightChild()) : node;
    }
    public N add(T key) {
        N node = null;
    
        if (root == null)
            setRoot(node = createNode(key));
        else
            node = addAux(root, key);
    
        return node;
    }
    
    private N addAux(N node, T key) {
        int diff = key.compareTo(node.getKey());
        N child, newNode = null;
    
        if (diff < 0) {
            if ((child = node.getLeftChild()) == null)
                node.setLeftChild(newNode = createNode(key));
            else
                newNode = addAux(child, key);
        }
        else if (diff > 0) {
            if ((child = node.getRightChild()) == null)
                node.setRightChild(newNode = createNode(key));
            else
                newNode = addAux(child, key);
        }
    
        return newNode;
    }
    /** @return the removed node with the specific key if exists; otherwise, {@code null}. */
    public N remove(T key) {
        N node = findNode(root, key);
    
        if (node != null) {
            if (node.hasBothChildren()) removeHibbard(node);
            else removeSelf(node);
        }
    
        return node;
    }
    /** @return the lowest node whose subtree has been updatede. */
    protected N removeSelf(N node) {
        N parent = node.getParent();
        N child = null;
    
        if (node.hasLeftChild()) child = node.getLeftChild();
        else if (node.hasRightChild()) child = node.getRightChild();
        replaceChild(node, child);
    
        return parent;
    }
    
    private void replaceChild(N oldNode, N newNode) {
        if (isRoot(oldNode))
            setRoot(newNode);
        else
            oldNode.getParent().replaceChild(oldNode, newNode);
    }
    /** @return the lowest node whose subtree has been updatede. */
    protected N removeHibbard(N node) {
        N successor = node.getRightChild();
        N min = findMinNode(successor);
        N parent = min.getParent();
    
        min.setLeftChild(node.getLeftChild());
    
        if (min != successor) {
            parent.setLeftChild(min.getRightChild());
            min.setRightChild(successor);
        }
    
        replaceChild(node, min);
        return parent;
    }
    public class BinarySearchTree<T extends Comparable<T>> extends AbstractBinarySearchTree<T, BinaryNode<T>> {
        /**
         * @param key the key of this node.
         * @return a binary node with the specific key.
         */
        @Override
        public BinaryNode<T> createNode(T key) {
            return new BinaryNode<T>(key);
        }
    }