arrow-left

All pages
gitbookPowered by GitBook
1 of 1

Loading...

9.2. Ford-Fulkerson Algorithm

This section describes the implementation of Ford-Fulkerson Algorithm

hashtag
Subgraph

Let us define the Subgrapharrow-up-right class that consists of a subset of vertices and edges from the original graph:

Let us define helper methods:

hashtag
Ford-Fulkerson

Ford-Fulkerson algorithm finds the maximum flow from a flow network as follows:

Let us create the class:

  • L2: indicates one source and one target vertices.

  • L6: iterates as long as it can find an augmenting path

Let us define the getMin() method:

Finally, let us define the getAugmentingPath() method:

  • L2: once the source reaches the target, it found an augmenting path.

  • L6: adding the source vertex would cause a cycle.

  • L7

hashtag
Backward Pushing

Let us consider the following graph:

As shown, our implementation of Ford-Fulkerson Algorithm does not always guarantee to find the maximum flow correctly. To fix this issue, we need to implement backward pushing:

The backward pushing can be performed after the applying the flow to all edges as in the implementation above (see the code in the "With Backward Pushing" tab).

Finally, the updateBackward() method can be implemented as follows:

public class Subgraph {
    private final List<Edge> edges;
    private final Set<Integer> vertices;

    public Subgraph() {
        edges = new ArrayList<>();
        vertices = new HashSet<>();
    }

    public Subgraph(Subgraph graph) {
        edges = new ArrayList<>(graph.getEdges());
        vertices = new HashSet<>(graph.getVertices());
    }
}
public List<Edge> getEdges() { return edges; }

public Set<Integer> getVertices() { return vertices; }

public void addEdge(Edge edge) {
    edges.add(edge);
    vertices.add(edge.getSource());
    vertices.add(edge.getTarget());
}

public boolean contains(int vertex) {
    return vertices.contains(vertex);
}
L7
: finds the edge with the minimum capacity in the augmenting path.
  • L8: updates the edges in the path with the flow.

  • : cannot push the flow when there is no residual left.
  • L10: recursively finds the augmenting path by switching the target.

  • FordFulkersonarrow-up-right
    public class FordFulkerson implements NetworkFlow {
        public MaxFlow getMaximumFlow(Graph graph, int source, int target) {
            MaxFlow mf = new MaxFlow(graph);
            Subgraph sub;
    
            while ((sub = getAugmentingPath(graph, mf, new Subgraph(), source, target)) != null) {
                double min = getMin(mf, sub.getEdges());
                mf.updateFlow(sub.getEdges(), min);
            }
    
            return mf;
        }
    }
    public class FordFulkerson implements NetworkFlow {
        public MaxFlow getMaximumFlow(Graph graph, int source, int target) {
            MaxFlow mf = new MaxFlow(graph);
            Subgraph sub;
    
            while ((sub = getAugmentingPath(graph, mf, new Subgraph(), source, target)) != null) {
                double min = getMin(mf, sub.getEdges());
                mf.updateFlow(sub.getEdges(), min);
                updateBackward(graph, sub, mf, min);
            }
    
            return mf;
        }
    }
    private double getMin(MaxFlow mf, List<Edge> path) {
        double min = mf.getResidual(path.get(0));
    
        for (int i = 1; i < path.size(); i++)
            min = Math.min(min, mf.getResidual(path.get(i)));
    
        return min;
    }
    private Subgraph getAugmentingPath(Graph graph, MaxFlow mf, Subgraph sub, int source, int target) {
        if (source == target) return sub;
        Subgraph tmp;
    
        for (Edge edge : graph.getIncomingEdges(target)) {
            if (sub.contains(edge.getSource())) continue;
            if (mf.getResidual(edge) <= 0) continue;
            tmp = new Subgraph(sub);
            tmp.addEdge(edge);
            tmp = getAugmentingPath(graph, mf, tmp, source, edge.getSource());
            if (tmp != null) return tmp;
        }
    
        return null;
    }
    protected void updateBackward(Graph graph, Subgraph sub, MaxFlow mf, double min) {
        boolean found;
    
        for (Edge edge : sub.getEdges()) {
            found = false;
    
            for (Edge rEdge : graph.getIncomingEdges(edge.getSource())) {
                if (rEdge.getSource() == edge.getTarget()) {
                    mf.updateFlow(rEdge, -min);
                    found = true;
                    break;
                }
            }
    
            if (!found) {
                Edge rEdge = graph.setDirectedEdge(edge.getTarget(), edge.getSource(), 0);
                mf.updateFlow(rEdge, -min);
            }
        }
    }