Entropy and Perplexity
Entropy
Entropy is a measure of the uncertainty, randomness, or information content of a random variable or a probability distribution. The entropy of a random variable is defined as:
is the probability distribution of . The self-information of is defined as , which measures how much information is gained when occurs. The negative sign indicates that as the occurrence of increases, its self-information value decreases.
Entropy has several properties, including:
It is non-negative: .
It is at its minimum when is entirely predictable (all probability mass on a single outcome).
It is at its maximum when all outcomes of are equally likely.
Q10: Why is logarithmic scale used to measure self-information in entropy calculations?
Sequence Entropy
Sequence entropy is a measure of the unpredictability or information content of the sequence, which quantifies how uncertain or random a word sequence is.
Assume a long sequence of words, , concatenating the entire text from a language . Let be a set of all possible sequences derived from , where is the shortest sequence (a single word) and is the longest sequence. Then, the entropy of can be measured as follows:
The entropy rate (per-word entropy), , can be measured by dividing by the total number of words :
In theory, there is an infinite number of unobserved word sequences in the language . To estimate the true entropy of , we need to take the limit to as approaches infinity:
The Shannon-McMillan-Breiman theorem implies that if the language is both stationary and ergodic, considering a single sequence that is sufficiently long can be as effective as summing over all possible sequences to measure because a long sequence of words naturally contains numerous shorter sequences, and each of these shorter sequences reoccurs within the longer sequence according to their respective probabilities.
The bigram model in the previous section is stationary because all probabilities rely on the same condition, . In reality, however, this assumption does not hold. The probability of a word's occurrence often depends on a range of other words in the context, and this contextual influence can vary significantly from one word to another.
By applying this theorem, can be approximated:
Consequently, is approximated as follows, where :
Q11: What indicates high entropy in a text corpus?
Perplexity
Perplexity measures how well a language model can predict a set of words based on the likelihood of those words occurring in a given text. The perplexity of a word sequence is measured as:
Hence, the higher is, the lower its perplexity becomes, implying that the language model is "less perplexed" and more confident in generating .
Perplexity, , can be directly derived from the approximated entropy rate, :
Q12: What is the relationship between corpus entropy and language model perplexity?
References
Entropy, Wikipedia
Perplexity, Wikipedia
Last updated
Was this helpful?