Smoothing
Unigram Smoothing
The unigram model in the previous section faces a challenge when confronted with words that do not occur in the corpus, resulting in a probability of 0. One common technique to address this challenge is smoothing, which tackles issues such as zero probabilities, data sparsity, and overfitting that emerge during probability estimation and predictive modeling with limited data.
Laplace smoothing (aka. add-one smoothing) is a simple yet effective technique that avoids zero probabilities and distributes the probability mass more evenly. It adds the count of 1 to every word and recalculates the unigram probabilities:
Thus, the probability of any unknown word with Laplace smoothing is calculated as follows:
The unigram probability of an unknown word is guaranteed to be lower than the unigram probabilities of any known words, whose counts have been adjusted to be greater than 1.
Note that the sum of all unigram probabilities adjusted by Laplace smoothing is still 1:
Let us define a function unigram_smoothing() that takes a file path and returns a dictionary with bigrams and their probabilities as keys and values, respectively, estimated by Laplace smoothing:
from src.ngram_models import unigram_count, Unigram
UNKNOWN = ''
def unigram_smoothing(filepath: str) -> Unigram:
counts = unigram_count(filepath)
total = sum(counts.values()) + len(counts)
unigrams = {word: (count + 1) / total for word, count in counts.items()}
unigrams[UNKNOWN] = 1 / total
return unigramsL1: Import the
unigram_count()function from the src.ngram_models package.L3: Define a constant representing the unknown word.
L7: Increment the total count by the vocabulary size.
L8: Increment each unigram count by 1.
L9: Add the unknown word to the unigrams with a probability of 1 divided by the total count.
We then test unigram_smoothing() with a text file dat/chronicles_of_narnia.txt:
from src.ngram_models import test_unigram
corpus = 'dat/chronicles_of_narnia.txt'
test_unigram(corpus, unigram_smoothing)L1: Import
test_unigram()from the ngram_models package.
I 0.010225
Aslan 0.001796
Lucy 0.001762
Edmund 0.001369
Narnia 0.001339
Caspian 0.001300
Jill 0.001226
Peter 0.001005
Shasta 0.000902
Digory 0.000899
Eustace 0.000853
Susan 0.000636
Tirian 0.000585
Polly 0.000533
Aravis 0.000523
Bree 0.000479
Puddleglum 0.000479
Scrubb 0.000469
Andrew 0.000396 Unigram With Smoothing W/O Smoothing
I 0.010225 0.010543
Aslan 0.001796 0.001850
Lucy 0.001762 0.001815
Edmund 0.001369 0.001409
Narnia 0.001339 0.001379
Caspian 0.001300 0.001338
Jill 0.001226 0.001262
Peter 0.001005 0.001034
Shasta 0.000902 0.000928
Digory 0.000899 0.000925
Eustace 0.000853 0.000877
Susan 0.000636 0.000654
Tirian 0.000585 0.000601
Polly 0.000533 0.000547
Aravis 0.000523 0.000537
Bree 0.000479 0.000492
Puddleglum 0.000479 0.000492
Scrubb 0.000469 0.000482
Andrew 0.000396 0.000406Compared to the unigram results without smoothing (see the "Comparison" tab above), the probabilities for these top unigrams have slightly decreased.
Q4: When applying Laplace smoothing, do unigram probabilities always decrease? If not, what conditions can cause a unigram's probability to increase?
The unigram probability of any word (including unknown) can be retrieved using the UNKNOWN key:
def smoothed_unigram(probs: Unigram, word: str) -> float:
return probs.get(word, unigram[UNKNOWN])L2: Use
get()to retrieve the probability of the target word fromprobs. If the word is not present, default to the probability of theUNKNOWNtoken.
unigram = unigram_smoothing(corpus)
for word in ['Aslan', 'Jinho']:
print(f'{word} {smoothed_unigram(unigram, word):.6f}')L2: Test a known word, 'Aslan', and an unknown word, 'Jinho'.
Aslan 0.001796
Jinho 0.000002Bigram Smoothing
The bigram model can also be enhanced by applying Laplace smoothing:
Thus, the probability of an unknown bigram where is known but is unknown is calculated as follows:
Q5: What does the Laplace smoothed bigram probability of represent when is unknown, and what is a potential problem with this estimation?
Let us define a function bigram_smoothing() that takes a file path and returns a dictionary with unigrams and their probabilities as keys and values, respectively, estimated by Laplace smoothing:
from src.ngram_models import bigram_count, Bigram
def bigram_smoothing(filepath: str) -> Bigram:
counts = bigram_count(filepath)
vocab = set(counts.keys())
for _, css in counts.items():
vocab.update(css.keys())
bigrams = dict()
for prev, ccs in counts.items():
total = sum(ccs.values()) + len(vocab)
d = {curr: (count + 1) / total for curr, count in ccs.items()}
d[UNKNOWN] = 1 / total
bigrams[prev] = d
bigrams[UNKNOWN] = 1 / len(vocab)
return bigramsL1: Import the
bigram_count()function from the src.ngram_models package.L5: Create a set
vocabcontaining all unique .L6-7: Add all unique to
vocab.L11: Calculate the total count of all bigrams with the same previous word.
L12: Calculate and store the probabilities of each current word given the previous word
L13: Calculate the probability for an unknown current word.
L16: Add a probability for an unknown previous word.
We then test bigram_smoothing() with the same text file:
from src.ngram_models import test_bigram
corpus = 'dat/chronicles_of_narnia.txt'
test_bigram(corpus, bigram_smoothing)L1: Import the
test_bigram()function from the ngram_models package.
I
'm 0.020590
do 0.019136
've 0.011143
was 0.010598
have 0.009629
am 0.009084
'll 0.008236
think 0.008115
'd 0.006661
know 0.006540
the
same 0.008403
other 0.007591
King 0.007096
Witch 0.006673
whole 0.005119
others 0.005084
first 0.004978
Dwarf 0.004872
door 0.004837
great 0.004837
said
the 0.039038
, 0.018270
Lucy 0.014312
Edmund 0.011206
Caspian 0.010049
Peter 0.009805
Jill 0.008709
. 0.008648
Digory 0.007734
Aslan 0.007491Finally, we test the bigram estimation using smoothing for unknown sequences:
def smoothed_bigram(probs: Bigram, prev: str, curr: str) -> float:
d = probs.get(prev, None)
return probs[UNKNOWN] if d is None else d.get(curr, d[UNKNOWN])L2: Retrieve the bigram probabilities of the previous word, or set it to
Noneif not present.L3: Return the probability of the current word given the previous word with smoothing. If the previous word is not present, return the probability for an unknown previous word.
bigram = bigram_smoothing(corpus)
for word in [('Aslan', 'is'), ('Aslan', 'Jinho'), ('Jinho', 'is')]:
print(f'{word} {smoothed_bigram(bigram, *word):.6f}')L3: The tuple word is unpacked as passed as the second and third parameters.
('Aslan', 'is') 0.001146
('Aslan', 'Jinho') 0.000076
('Jinho', 'is') 0.000081Normalization
Unlike the unigram case, the sum of all bigram probabilities adjusted by Laplace smoothing given a word is not guaranteed to be 1. To illustrate this point, let us consider the following corpus comprising only two sentences:
You are a student
You and I are studentsThere are seven word types in this corpus, {"I", "You", "a", "and", "are", "student", "students"}, such that . Before Laplace smoothing, the bigram probabilities of are estimated as follows:
However, after applying Laplace smoothing, the bigram probabilities undergo significant changes, and their sum no longer equals 1:
The bigram distribution for can be normalized to 1 by adding the total number of word types occurring after , denoted as , to the denominator instead of :
Consequently, the probability of an unknown bigram can be calculated with the normalization as follows:
For the above example, . Once you apply to , the sum of its bigram probabilities becomes 1:
A major drawback of this normalization is that the probability cannot be measured when is unknown. Thus, we assign the minimum unknown probability across all bigrams as the bigram probability of , where the previous word is unknown, as follows:
Q6: Why is it problematic when bigram probabilities following a given word don't sum to 1?
Reference
Source: smoothing.py
Additive smoothing, Wikipedia
Last updated
Was this helpful?